DAY - 4

MATRICS & DETERMINANTS

1. What is the value of the determinant

- (a) 1+x+y+z
- (c) $x^2y^2z^2$
- 2. If $|0 \times y| = 0$, then which one of the following is correct?
 - (a) $\frac{x}{y}$ is one of the cube roots of unity
 - (b) x is one of the cube roots of unity
 - (c) y is one of the cube roots of unity
 - (d) $\frac{x}{y}$ is one of the cube roots of -1
- Consider the set A of all matrices of order 3 × 3 with entries 0 or 1 only. Let B be the subset of A consisting of all matrices whose determinant is 1. Let C be the subset of A consisting of all matrices whose determinant is -1. Then which one of the following is correct?
 - (a) C is empty
 - (b) B has as many elements as C
 - (c) A=B∪C
 - (d) B has thrice as many elements as C
- $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then what is \mathbf{A}^3 equal to?
 - cos 3θ sin 3θ -sin 3θ cos 3θ

- What is the order of

$$(x \ y \ z) \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}?$$

- (a) 3×1
- (c) 1×3
- (d) 3×3
- 16. If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then the value of A^4 is

- The matrix A has x rows and x + 5 columns. The matrix B has y rows and 11 - y columns. Both AB and BA exist. What are the values of x and y respectively?
 - (a) 8 and 3
- (b) 3 and 4
- (c) 3 and 8
- (d) 8 and 8

- If A is a square matrix, then the value of adj A^T (adj A)^T is equal to
 - (a) A
 - (b) 2 | A | I, where I is the identity matrix
 - (c) null matrix whose order is same as that of A
 - (d) unit matrix whose order is same as that of A
- 19. The value of the determinant $\begin{vmatrix} \cos^2 \frac{\theta}{2} & \sin^2 \frac{\theta}{2} \\ \sin^2 \frac{\theta}{2} & \cos^2 \frac{\theta}{2} \end{vmatrix}$ for all values
 - of θ , is
 - (a) 1

- (b) cos θ
- (c) sin θ
- (d) cos 2θ
- 10. If a, b, c are non-zero real numbers, then the inverse of the

$$matrix A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \text{ is equal to}$$

- (a) $\begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1} \end{bmatrix}$ (b) $\frac{1}{abc} \begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1} \end{bmatrix}$
- (c) $\frac{1}{abc}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) $\frac{1}{abc}\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$
- 11. The system of equations kx + y + z = 1, x + ky + z = k and $x + y + kz = k^2$ has no solution if k equals
 - (a) 0
- (b) 1
- (c) -1
- (d) -2
- $1-\alpha \alpha \alpha^2 \alpha^2$ 12. The value of the determinant $\begin{vmatrix} 1-\beta & \beta-\beta^2 & \beta^2 \\ 1-\gamma & \gamma-\gamma^2 & \gamma^2 \end{vmatrix}$ is equal to
 - (a) $(\alpha \beta)(\beta \gamma)(\alpha \gamma)$
 - (b) $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
 - (c) $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$
- [1 0 2] 13. The adjoint of the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$ is
- (c) $\begin{bmatrix} 6 & 1 & 2 \\ 4 & -1 & 2 \\ 6 & 3 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} -6 & 2 & 1 \\ 4 & -2 & 1 \\ 3 & 1 & -6 \end{bmatrix}$
- 14. If $A = \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix}$, then which one of the following is correct?

DAY - 4

MATRICS & DETERMINANTS

- (a) $A^2 = -2A$
- (b) $A^2 = -4A$
- (c) $A^2 = -3A$
- (d) $A^2 = 4A$
- 15. If p+q+r=a+b+c=0, then the determinant $\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix}$

equals

(a) 0

- (b) 1
- (c) pa + qb + rc
- (d) pa+qb+rc+a+b+c
- 16. What is the inverse of the matrix

$$A = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}?$$

- (a) $\begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- (b) $\begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$
- (d) $\begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- If A is a 2 × 3 matrix and AB is a 2 × 5 matrix, then B must be a [2018-I]
 - (a) 3 × 5 matrix
- (b) 5 × 3 matrix
- (c) 3×2 matrix
- (d) 5×2 matrix
- 18. If $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $A^2 kA I_2 = O$, where I_2 is the 2×2

identity matrix, then what is the value of k?

- (a) 4
- (b) -4
- (c) 8

- (d) -8
- 19. A square matrix A is called orthogonal if
 - (a) $A = A^2$
- (b) A' = A-1
- (c) $A = A^{-1}$
- (d) A=A'

Where A' is the transpose of A.

- 20. For a square matrix A, which of the following properties hold?
 - 1. $(A^{-1})^{-1} = A$
 - $2. \quad \det(A^{-1}) = \frac{1}{\det A}$
 - 3. $(\lambda A)^{-1} \lambda A^{-1}$ where λ is a scalar

Select the correct answer using the code given below:

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3
- 21. Which one of the following factors does the expansions of

the determinant $\begin{pmatrix} x & y & 3 \\ x^2 & 5y^3 & 9 \\ x^3 & 10y^3 & 27 \end{pmatrix}$ contain?

- (a) x-3
- (b) x y
- (c) Y 3
- (d) x-3y
- 22. What is the adjoint of the matrix

$$\begin{pmatrix} \cos(-\theta) - \sin(-\theta) \\ -\sin(-\theta)\cos(-\theta) \end{pmatrix}$$
?

- (a) $\begin{pmatrix} \cos \theta \sin \theta \\ -\sin \theta \cos \theta \end{pmatrix}$
- (b) $\begin{pmatrix} \cos\theta \sin\theta \\ \sin\theta \cos\theta \end{pmatrix}$
- (c) $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$
- (d) $\begin{pmatrix} \cos\theta \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$
- 23. If A and B are two invertible square matrices of same order, then what is (AB)⁻¹ equal to?
 - (a) $B^{-1}A^{-1}$
- (b) $A^{-1}B^{-1}$
- (c) B-1A
- (d) A-1B
- 24. If a + b + c = 0, then one of the solution of

$$\begin{vmatrix} a-x & c & b \\ c & b-x & a \\ b & a & c-x \end{vmatrix} = 0 \text{ is}$$

- (a) x=a
- (b) $x = \sqrt{\frac{3(a^2 + b^2 + c^2)}{2}}$
- (c) $x = \sqrt{\frac{2(a^2 + b^2 + c^2)}{3}}$
- (d) x = 0
- 25. What should be the value of x so that the matrix $\begin{pmatrix} 2 & 4 \\ -8 & x \end{pmatrix}$

does not have an inverse?

- (a) 16
- (b) -16
- (c) 8
- (d) 8
- 26. The system of equation

$$2x + y - 3z = 5$$

3x - 2y + 2z = 5 and

$$5x - 3y - z = 16$$

- (a) is inconsistent
- (b) is consistent, with a unique solution
- (c) is consistent, with infinitely many solutions
- (d) has its solution lying along x-axis in three dimensional space
- If u, v and w (all positive) are the pth, qth and rth terms of a GP, the determinant of the matrix

- (a) 0
- (b) 1
- (c) (p-q)(q-r)(r-p)
- (d) $\ln u \times \ln v \times \ln w$
- 28. Consider the following in respect of matrices A, B and C of same order:
 - 1. (A+B+C)'=A'+B'+C'
 - (AB)'=A'B'
 - 3. (ABC)'=C'B'A'

Where A' is the transpose of the matrix A. Which of the above are correct?

DAY – 4

MATRICS & DETERMINANTS

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3
- Let matrix B be the adjoint of a square matrix A,
 é be the identity matrix of same order as A. If $k \neq 0$ is the determinant of the matrix A, then what is AB equal to?
 - (a) ℓ
- (b) k ℓ
- (c) k² ℓ
- (d) (1/k)ℓ
- 30. What is the determinant of the matrix | z z z -
 - (a) (x-y)(y-z)(z-x) (b) (x-z)(z-x)
 - (c) (y-z)(z-x)
- (d) $(z-x)^2(x+y+z)$
- 31. If A, B and C are the angles of a triangle and

$$\begin{vmatrix} 1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin^2 A & \sin B+\sin^2 B & \sin C+\sin^2 C \end{vmatrix} = 0,$$

then which one of the following is correct?

- (a) The triangle ABC is isosceles
- (b) The triangle ABC is equilateral
- (c) The triangle ABC is scalene
- (d) No conclusion can be drawn with regard to the nature of the triangle
- 32. Consider the following in respect of matrices A and B of same
 - 1. $A^2 B^2 = (A + B)(A B)$
 - 2. $(A-I)(I+A)=0 \Leftrightarrow A^2=I$

Where I is the identity matrix and O is the null matrix.

Which of the above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 33. What is the area of the triangle with vertices /

$$\left(x_{1}, \frac{1}{x_{1}}\right), \left(x_{2}, \frac{1}{x_{2}}\right), \left(x_{3}, \frac{1}{x_{3}}\right)$$
?

- (a) $|(x_1-x_2)(x_2-x_3)(x_3-x_1)|$
- (b) 0

(c)
$$\frac{\left(x_1 - x_2\right)\left(x_2 - x_3\right)\left(x_3 - x_1\right)}{x_1x_2x_3}$$

(d)
$$\frac{(x_1-x_2)(x_2-x_3)(x_3-x_1)}{2x_1x_2x_3}$$

34. If B =
$$\begin{bmatrix} 3 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$
, then what is adjoint of B equal to ?

(a)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & -1 & 8 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 8 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

(d) It does not exist

- 35. If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then the matrix A is/an
 - (a) Singular matrix
- (b) Involutory matrix
- (c) Nilpotent matrix
- (d) Idempotent matrix
- If A is an identity matrix of order 3, then its inverse (A⁻¹)
 - (a) is equal to null matrix(b) is equal to A
- - (c) is equal to 3A
- (d) does not exist
- 37. A is a square matrix of order 3 such that its determinant is 4. What is the determinant of its transpose?
- (c) 32
- (d) 4
- 38. If A is a square matrix of order n > 1, then which one of the following is correct?
 - (a) det (-A) = det A
- (b) $\det(-A) = (-1)^n \det A$

(c) det (-A) = - det A (d) $\det(-A) = n \det A$ DIRECTION (Qs. 39 - 40): Consider the following for the

next 02 (two) items:

Let A and B be (3×3) matrices with det A = 4 and det B = 3.

- 39. What is det (2AB) equal to?
 - (a) 96
- (b) 72

- 40. What is det (3AB⁻¹) equal to ?
 - (a) 12
- (b) 18

- 41. The cofactor of the element 4 in the determinant

- (a) 2
- (b) 4
- (c) 6
- (d) -6
- If A is a square matrix of order 3 with |A| ≠ 0, then which one of the following is correct?

 - (a) |adjA| = |A| (b) $|adjA| = |A|^2$
 - (c) $|adjA| = |A|^3$
- (d) $|adjA|^2 = |A|$

43. If
$$A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

where $i = \sqrt{-1}$, then which one of the following is correct?

- (a) AB = − C
- (b) AB = C
- (c) $A^2 = B^2 = C^2 = I$, where I is the identity matrix
- (d) BA ≠ C
- 44. If $2A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$, then what is A^{-1} equal to?

MATRICS & DETERMINANTS

- (a) $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$
- (b) $\frac{1}{2} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$
- $\begin{array}{cc} (c) & \frac{1}{4} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \end{array}$
- (d) None of these
- 45. If $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \times \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 17 & \lambda \end{pmatrix}$, then what is λ equal to ?
 - (a) 7
- (b) −7
- (c) 9
- (d) -9
- 46. What is the value of the determinant

$$\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$$
?

- (a) 0
- (b) abc
- (c) ab + bc + ca
- (d) abc (a+b+c)
- 47. Consider the following statements in respect of the matrix

$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$

- The matrix A is skew-symmetric.
- 2. The matrix A is symmetric.
- The matrix A is invertible.

Which of the above statements is/are correct?

- (a) 1 only
- (b) 3 only
- (c) 1 and 3
- (d) 2 and 3
- 48. Consider two matrices $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & -4 \\ 2 & 1 & -4 \end{bmatrix}$.

Which one of the following is correct?

- (a) B is the right inverse of A
- (b) B is the left inverse of A
- (c) B is the both sided inverse of A
- (d) None of the above
- 49. One of the roots of

$$\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix} = 0 \text{ is :}$$

- (a) abc
- (b) a+b+c
- (c) -(a+b+c)
- (d) −abc
- 50. If A is any matrix, then the product AA is defined only when A is a matrix of order $m \times n$ where:
 - (a) m > n
- (b) m ≤ n
- (c) m = n
- (d) m < n
- The determinant of an odd order skew symmetric matrix is always:
 - (a) Zero
- (b) One
- (c) Negative
- (d) Depends on the matrix
- 52. If any two adjacent rows or columns of a determinant are intercharged in position, the value of the determinant:
 - (a) Becomes zero
- (b) Remains the same
- (c) Changes its sign
- (d) Is doubled

If a ≠ b ≠ c are all positive, then the value of the determinant

- (a) non-negative
- (b) non-positive
- (c) negative
- (d) positive
- 54. Let A and B be two matrices such that AB = A and BA = B. Which of the following statements are correct? /
 - 1. $A^2 = A$
 - 2. $B^2 = B$
 - 3. $(AB)^2 = AB$

Select the correct answer using the code given below:

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3
- 55. If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, where $i = \sqrt{-1}$, then what is x

equal to?

- (a) 3
- (b) 2
- (c) 1
- (d) 0

Day • 4 Answer Key									
1	2	3	4	5	6	7	8	9	10
С	D	В	A	В	A	С	С	В	Α
11	12	13	14	15	16	17	18	19	20
D	В	В	В	Α	A	A	A	В	Α
21	22	23	24	25	26	27	28	29	30
A	A	A	D	В	В	A	С	В	D
31	32	33	34	35	36	37	38	39	40
A	В	D	A	В	В	В	D	A	С
41	42	43	44	45	46	47	48	49	50
С	В	A	D	В	A	A	В	С	С
51	52	53	54	55					
A	С	C	D	D					